Взгляд в завтрашний день

новости мира .

До сих пор мы знакомились только с электромагнитными носителями космической информации. Однако, как уже было отмечено выше, вестниками космических процессов могут служить и корпускулярные излучения, потоки частиц.
Прежде всего это космические лучи — потоки заряженных частиц — ядер атомов различных химических элементов, пронизывающие космическое пространство и обладающие огромными кинетическими энергиями — от 108 эВ и больше. Это в десятки тысяч раз больше, чем энергии теплового движения частиц в самых горячих объектах Вселенной.


Следовательно, своим возникновением космические лучи обязаны каким-то мощным физическим, процессам, изучение которых представляет для современной астрофизики особый интерес. Это могут быть, например, так называемые вспышки сверхновых звезд, а также активные физические процессы в ядрах звездных систем (галактик) и в квазарах.
Интересным носителем космической информации являются и элементарные частицы — нейтрино. Эти частицы рождаются при радиоактивном бета-распаде, когда ядро одного химического элемента испускает электрон и превращается в ядро другого химического элемента.
Нейтрино не имеет электрического заряда и чрезвычайно слабо взаимодействует с веществом. Точнее говоря, оно участвует только в так называемых слабых физических взаимодействиях, не вступая ни в 1012 раз более сильные электромагнитные взаимодействия, ни в ядерные взаимодействия, которые еще в сотни раз мощнее. Именно за эти свойства нейтрино и заслужило свое наименование — его предложил знаменитый итальянский физик Энрико Ферми: по-итальянски «нейтрино» означает сразу «маленький» и «нейтральный».
Длина свободного пробега нейтрино в веществе колоссальна: она исчисляется миллионами миллиардов километров. Чтобы полностью заэкранироваться от частиц космических лучей самых высоких энергий, достаточно опуститься в глубь Земли на сотни метров, максимум на несколько километров. А для полной защиты от потока нейтрино нужно было бы расположить один за другим 10 млрд. земных шаров или поставить свинцовую плиту толщиной в несколько триллионов километров.
Нейтрино должны в большом количестве рождаться в ходе термоядерных реакций, являющихся источником энергии Солнца и звезд. Свободно пронизывая толщу звездного вещества, они вылетают в космическое пространство и несут ценнейшую информацию о физических процессах, протекающих в звездных недрах. В сущности, современная астрофизика не знает другого способа, который позволял бы получать прямые сведения об этих процессах.
Как считают теоретики, на последней стадии жизни массивных звезд, когда «умирающая» звезда катастрофически сжимается и превращается либо в нейтронную звезду, либо в черную дыру, могут происходить кратковременные нейтринные вспышки, наблюдение которых дало бы бесценную информацию о заключительных стадиях существования этих небесных тел.
Возможно также, что нейтрино высоких энергий могут рождаться в различных уголках Вселенной в результате каких-либо чрезвычайно мощных физических процессов. Надо ли говорить, какой огромный интерес представляли бы сведения о подобных явлениях.
Но, пожалуй, наиболее увлекательна перспектива зарегистрировать реликтовые нейтрино, родившиеся на самых ранних стадиях существования нашей Вселенной.
Разумеется, регистрация нейтрино — задача технически чрезвычайно сложная. Но пути к ее решению существуют, необходимая аппаратура разрабатывается, ее возможности растут, и можно не сомневаться, что нейтринная астрофизика уже в недалеком будущем значительно раздвинет рамки наших представлений о физике Вселенной.
Еще один весьма перспективный и многообещающий вестник Вселенной — гипотетические гравитационные волны, существование которых предсказывается общей теорией относительности А. Эйнштейна.
Подобно тому как возмущения электрического и магнитного полей приводят к возникновению электромагнитных волн, возмущения гравитационного поля должны в принципе возбуждать гравитационные волны.
Гравитационные волны как бы отрываются от массивных объектов и распространяются в пространстве, неся с собой энергию и импульс. Однако зарегистрировать гравитационные волны чрезвычайно сложно, так как они почти не поглощаются материей.
Более десяти лет назад американский физик Д. Вебер сообщил о том, что ему удалось зарегистрировать гравитационные волны, идущие из космоса. Однако вскоре выяснилось, что радость была преждевременной. Какие именно сигналы регистрировали установки Вебера, до сих пор неясно, но нет сомнений в том, что это были не гравитационные волны: для их обнаружения чувствительность детекторов Вебера была явно недостаточна.
Но хотя гравитационные волны пока зарегистрировать не удалось, большинство ученых не сомневается в том, что они существуют. А если так, то о каких космических явлениях способны они рассказать? Их могут порождать двойные системы, а также столкновения звезд. По-видимому, они могут возникать и при вспышках сверхновых звезд, и при катастрофическом сжатии вещества под действием собственного тяготения. Кроме того, гравитационные волны могут принести чрезвычайно интересные сведения о рассеянии материи космическими объектами, о динамике многих других космических процессов.

Комментарии закрыты.